- 
							
								Nathann Cohen
							
              						
 
											- 
							
								Frédéric Havet
							
              						
 
									
			
																												
							
									
				
										Keywords:
				
				
																		Identifying codes, 													Orientation, 													Computational complexity															
			
			
										
					
Abstract
					If $G$ be a graph or a digraph, let $\mathrm{id}(G)$ be the minimum size of an identifying code of $G$ if one exists, and $\mathrm{id}(G)=+\infty$ otherwise. For a graph $G$, let $\mathrm{idor}(G)$ be the minimum of $\mathrm{id}(D)$ overall orientations $D$ of $G$. We give some lower and upper bounds on $\mathrm{idor}(G)$. In particular, we show that $\mathrm{idor}(G)\leqslant \frac{3}{2} \mathrm{id}(G)$ for every graph $G$. We also show that computing $\mathrm{idor}(G)$ is NP-hard, while deciding whether $\mathrm{idor}(G)\leqslant |V(G)|-k$ is polynomial-time solvable for every fixed integer $k$.
				
			
			
																																							
					
													Author Biography
											
																													
								
																																							Frédéric Havet, CNRS, Université Côte d’Azur, I3S, INRIA
																	
								
									Projet Coati