Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 014, 18 pages      arXiv:1406.7046      https://doi.org/10.3842/SIGMA.2018.014
Contribution to the Special Issue on Moonshine and String Theory

Categorical Tori

Nora Ganter
School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria 3010, Australia

Received September 23, 2017, in final form January 31, 2018; Published online February 17, 2018

Abstract
We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal tori of simple and simply connected compact Lie groups and the tori associated to the Leech and Niemeyer lattices. We obtain the extraspecial 2-groups as the isomorphism classes of categorical fixed points under an involution action.

Key words: categorification; Lie group cohomology.

pdf (498 kb)   tex (24 kb)

References

  1. Baez J.C., Huerta J., An invitation to higher gauge theory, Gen. Relativity Gravitation 43 (2011), 2335-2392, arXiv:1003.4485.
  2. Baez J.C., Stevenson D., Crans A.S., Schreiber U., From loop groups to 2-groups, Homology Homotopy Appl. 9 (2007), 101-135, math.QA/0504123.
  3. Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008.
  4. Brylinski J.-L., McLaughlin D.A., The geometry of degree-$4$ characteristic classes and of line bundles on loop spaces. II, Duke Math. J. 83 (1996), 105-139.
  5. Carey A.L., Johnson S., Murray M.K., Stevenson D., Wang B.-L., Bundle gerbes for Chern-Simons and Wess-Zumino-Witten theories, Comm. Math. Phys. 259 (2005), 577-613, math.DG/0410013.
  6. Chern S.S., Simons J., Characteristic forms and geometric invariants, Ann. of Math. 99 (1974), 48-69.
  7. Conway J.H., Sloane N.J.A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, Vol. 290, 3rd ed., Springer-Verlag, New York, 1999.
  8. Johnson-Freyd T., Treumann D., ${H}^4({\rm Co}_0; {\bf Z})= {\bf Z}/24$, arXiv:1707.07587.
  9. Murray M.K., Roberts D.M., Stevenson D., Vozzo R.F., Equivariant bundle gerbes, Adv. Theor. Math. Phys. 21 (2017), 921-975, arXiv:1506.07931.
  10. Noohi B., Notes on 2-groupoids, 2-groups and crossed modules, Homology Homotopy Appl. 9 (2007), 75-106, math.CT/0512106.
  11. Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986.
  12. Schommer-Pries C.J., Central extensions of smooth 2-groups and a finite-dimensional string 2-group, Geom. Topol. 15 (2011), 609-676, arXiv:0911.2483.
  13. Tits J., Le Monstre (d'après R. Griess, B. Fischer et al.), Astérisque 121-122 (1985), 105-122.
  14. Wagemann F., Wockel C., A cocycle model for topological and Lie group cohomology, Trans. Amer. Math. Soc. 367 (2015), 1871-1909, arXiv:1110.3304.
  15. Waldorf K., Multiplicative bundle gerbes with connection, Differential Geom. Appl. 28 (2010), 313-340, arXiv:0804.4835.
  16. Waldorf K., A construction of string 2-group models using a transgression-regression technique, in Analysis, Geometry and Quantum Field Theory, Contemp. Math., Vol. 584, Amer. Math. Soc., Providence, RI, 2012, 99-115, arXiv:1201.5052.
  17. Waldorf K., Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection, Asian J. Math. 20 (2016), 59-115, arXiv:1004.0031.

Previous article  Next article   Contents of Volume 14 (2018)