Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 14 (2018), 015, 22 pages      arXiv:1703.05898      https://doi.org/10.3842/SIGMA.2018.015
Contribution to the Special Issue on the Representation Theory of the Symmetric Groups and Related Topics

Billiards and Tilting Characters for ${\rm SL}_3$

George Lusztig a and Geordie Williamson b
a) Massachusetts Institute of Technology, Cambridge, MA, USA
b) Sydney University, Sydney, NSW, Australia

Received July 18, 2017, in final form February 16, 2018; Published online February 21, 2018

Abstract
We formulate a conjecture for the second generation characters of indecomposable tilting modules for ${\rm SL}_3$. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system (''billiards bouncing in alcoves''). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.

Key words: tilting modules; billiards; $p$-canonical basis; symmetric group.

pdf (649 kb)   tex (101 kb)

References

  1. Achar P.N., Makisumi S., Riche S., Williamson G., Free-monodromic mixed tilting sheaves on flag varieties, arXiv:1703.05843.
  2. Achar P.N., Makisumi S., Riche S., Williamson G., Koszul duality for Kac-Moody groups and characters of tilting modules, arXiv:1706.00183.
  3. Achar P.N., Rider L., The affine Grassmannian and the Springer resolution in positive characteristic, Compos. Math. 152 (2016), 2627-2677, arXiv:1408.7050.
  4. Achar P.N., Rider L., Reductive groups, the loop Grassmannian, and the Springer resolution, arXiv:1602.04412.
  5. Andersen H.H., Filtrations and tilting modules, Ann. Sci. École Norm. Sup. (4) 30 (1997), 353-366.
  6. Angiono I.E., A quantum version of the algebra of distributions of ${\rm SL}_2$, Publ. Res. Inst. Math. Sci. 54 (2018), 141-161, arXiv:1607.04869.
  7. Donkin S., On tilting modules for algebraic groups, Math. Z. 212 (1993), 39-60.
  8. Elias B., Quantum Satake in type $A$. Part I, J. Comb. Algebra 1 (2017), 63-125, arXiv:1403.5570.
  9. Elias B., Losev I., Modular representation theory in type A via Soergel bimodules, arXiv:1701.00560.
  10. Erdmann K., Symmetric groups and quasi-hereditary algebras, in Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 424, Kluwer Acad. Publ., Dordrecht, 1994, 123-161.
  11. James G., The decomposition matrices of ${\rm GL}_n(q)$ for $n\le 10$, Proc. London Math. Soc. 60 (1990), 225-265.
  12. Jensen J.G., On the character of some modular indecomposable tilting modules for ${\rm SL}_3$, J. Algebra 232 (2000), 397-419.
  13. Jensen L.T., $p$-Kazhdan-Lusztig theory, Ph.D. Thesis, Max Planck Institute for Mathematics, Bonn, 2017.
  14. Jensen L.T., Williamson G., The $p$-canonical basis for Hecke algebras, in Categorification and Higher Representation Theory, Contemp. Math., Vol. 683, Amer. Math. Soc., Providence, RI, 2017, 333-361, arXiv:1510.01556.
  15. Libedinsky N., Williamson G., The anti-spherical category, arXiv:1702.00459.
  16. Lusztig G., Cells in affine Weyl groups. IV, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 36 (1989), 297-328.
  17. Lusztig G., On the character of certain irreducible modular representations, Represent. Theory 19 (2015), 3-8, arXiv:1407.5346.
  18. Lusztig G., Williamson G., On the character of certain tilting modules, Sci. China Math. 61 (2018), 295-298, arXiv:1502.04904.
  19. Lusztig G., Xi N.H., Canonical left cells in affine Weyl groups, Adv. Math. 72 (1988), 284-288.
  20. Parker A., Some remarks on a result of Jensen and tilting modules for ${\rm SL}_3(k)$ and $q-{\rm GL}_3(k)$, arXiv:0809.2249.
  21. Riche S., Williamson G., Tilting modules and the $p$-canonical basis, arXiv:1512.08296.
  22. Soergel W., Charakterformeln für Kipp-Moduln über Kac-Moody-Algebren, Represent. Theory 1 (1997), 115-132.
  23. Soergel W., Kazhdan-Lusztig polynomials and a combinatoric for tilting modules, Represent. Theory 1 (1997), 83-114.
  24. Williamson G., Algebraic representations and constructible sheaves, Jpn. J. Math. 12 (2017), 211-259, arXiv:1610.06261.
  25. Williamson G., Examples of $p$-canonical bases for the anti-spherical module for ${\rm SL}_3$, available at http://www.maths.usyd.edu.au/u/geordie/pCanA2/.
  26. Williamson G., How to calculate many new decomposition numbers for symmetric groups, in preparation.

Previous article  Next article   Contents of Volume 14 (2018)